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ON CONTACT PROBLEMS OF ELASTICITY THEORY

A. I. Kalandiya

This article reviews certain contact problems in the two- /389%*
dimensional theory of elasticity when round bodies touch without
friction along most of their boundary and, therefore, Herz'
hypothesis on the smallness of the contact area cannot be used.

It derives fundamental equations coinciding externally with the
equation in the theory of a finite-span wing with unknown

parameter. These equations are solved using Multhopp's

well-known techniquel, and numerical calculations are

performed in specific examples.

1. Let a rigid die with flat symmetrical base be pressed
by a force acting along the die's axis into an elastic medium
which is an infinite plane with a round opening.

It is assumed that the die can move only forward and, in
addition, that there are no stresses or rotation at infinity.

The shape of the die's base (close to the contour of the
opening) and the main vector of external forces squeezing the
die toward the medium's boundary are given.

The stressed state of the elastic body is sought.

Let this elastic medium occupy the plane of variable
{=Et-+in, from which a circle with center at point §=0 with
radius 1 is removed. We will assume that a single force of
magnitude P, directed opposite axis N\, acts on the die.

*Numbers in the margin indicate pagination of the foreign text.



Boundary conditions for the task are written as (cf. [2],
pP. 429):

N=0, T=0 na L T'=0, v»=g(0) wmlL, (1.1)
whereby the second of these conditions are fulfilled at contact
arc L,, not given beforehand, while the first is fulfilled at

the rest of the circumference L, L= L1+L2 Here, N and T

are, respectively, the normal and tangential components of
external stress acting on contour L, vp is normal (elastiq)
shift; g(g), given at L2’ is a true function of point.d=e1a,
which describes the shape of the die's base and, by virtue of

symmetry, satisfies the condition g(0)=g9(-g).

Henceforth, we will assume that g(q) has a second
derlvatlve along the arc of the contour which satisfied
Gel'der's equatlon.l

To solve the problem, we will introduce Kolosov-
Muskhelishvili's functions ¢(Z) and ¥(/). As we know, the
following relation exists at the boundary of the area ([2], p.
335).

(DG _C—G' __av- — _
(0) + P (0) — 9@ (s) — o*¥ () =N —iT (1.2)

According to the condition accepted above, at infinity we
will have the following if |Z| is large

eO=240("),  ¥O=1+0C (1.3)

whereby coefficients A and b are expressed as follows by
components of the main vector (0, -P) of external forces;

iP __ P
a=2T(ll-—|-_'L_)’ b—-m (r=3—4v) (1.4)

Here V is Poisson's coefficient.

N
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The condition T=0 at L by virtue of (1.2) is presented as
3®'(s) - *W () — 30 (s) — T (o) =0 (1.5)

Hence, performing the operation
1 ds
7= |

L

G -—
~ -

and taking (1.3) into account, we immediately find

W)+ Q)=b(—"")+4 at s 1
A=1lim 2 [¥ (3 — b3 at oo (1.6)

To determine constant A, we will multiply (1.2) times

6—1

have

d and integrate the resulting equality along L. We will

i N (c) ds
A=——W£——5—” | (1.7)

On the basis of (1.6), equality (1.2) takes the form:
() +P(5)—b(3—3 —A4=N at L
Hence, as above, we find
) =— 55 [T —T at ii>! (1.8)
L,

Differentiating (1.8) in terms of ; and taking into account
the continuity2 of normal stress n(g) at boundary L, we obtain

o 1 N{\ds |, b
VO)=—gm [TEE L (1.9)
L

To determine N(g) at L, we will use the well~-known formula
({21, p. 135)

2p0,= Re {5 [#3 (3) — 0%'(5) — %)}

(1.10)
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If we take (1l.5) into account, we obtain the following /391
equation from this equality by differentiating in terms of o

- %
s =e",

2[4 | = Redla— DO G)— () W)+ @)+ O L (1.11)

Introducing here the limit values for the functions ¢(L),
¢RL) given by equations (1.8) and (1.9) and the expression for
the left side of (1.6), on the basis of the latter, from
condition (1.1) we obtain the equation

=1 se { N'(2) d3 1 N(z)ds *Pi =
;+1A(%%F:J=—a Zﬂ.[ s '+=u+ﬂ(%_”0—‘
I

— dg()
_7.-—1 l.’ (1012)

To determine the integration line in this singular integral-
differential equation, we have one more relation

j."\’(s)ds:-——P (1.13)
Iy
After finding N(¢) and L2, we will determine stress
functions with (1.8) and (1l.6). In the particular case when the
rigid die is a round washer inserted into an opening of the same
~radius, we will have g(0)=0 at Ly, and equation (1.2) will
take the form:

-1 G N'(s) ds 1 N(s)ds *P -
:+4 N(0+ﬂffg_%"2=) s mx= zﬁ% %) (1.4)
Note. Equation (1.12) (or, more precisely, the equation
derived from (1.12) when its right side is replaced with a
certain approximate expression) is found in V. V. Panasyuk's
article {3].

This equation is derived somewhat differently on the basis
of the results of I. N. Kartsivadze (e.g. [2], paragraphs 125,
126) . The author apparently was not familiar with relatively



new analytical tools recently developed to solve this integral-
differential equation (cf. below, paragraph 3).

Note also that the case of a round die (of the same radius
as the opening) was considered by M. P. Sheremet'yev [4], who
proposed a method for constructing equation (1.14) somewhat
different than that used here.

However, the author's reasoning contains an omission

because of which the equation derived in [4] is incorrect.

As we know, in the two-dimensional deformed case,
deformation e, , and stresses GP, O« in polar coordinates are,
according to Hook's law, related as follows

1 2 ) .
€za=T(31“"=?)—T(=g+=l) (l.ls)

where E is the modulus of elasticity. A similar formula
suitable for the case of a generalized two-dimensional stressed
state, takes the form:

c,a=%'(:,—~.:_;) (l°16)
M. P. Sheremet'yev [4] uses only equation (1.16) ([4], p.
439, equation (1.10)), in view of which his reasoning is sound
only in the second of the two-dimensional cases. 1In this case,
the author's equation [p. 441, (2.15)] indeed coincides with
(1.14) (only this time one must take «=(3-v)/(1+Y). One must
take into account that, in reference [5], force P is directed

along axis &.

This note pertains also to the author's reasoning in other
cases of the equilibrium of an infinite plane which were
considered in the same work ([4].



2. Let a round elastic washer, generally with other /392
elastic properties, be inserted into a round opening in an
infinite medium, the opening and washer having the same
radius. It is assumed that the washer is squeezed toward the
surrounding material by a concentrated force applied to its
center. (As before, we will assume that stresses and rotation
disappear at infinity.)

All elements relating to the washer (elastic constants,
stress functions, etc.) are symbolized by 0, and we will write
contour conditions of the task in the form (cf. [2], p. 207)

N=0, T=0 .naLp .T=0, v‘:=rlD (2.1)
Ny—iTy=N—iT gL
The stress functions ﬁ(() and V(Q), which correspond to an
" infinite plate, will, as before, be expressed by equations-
(1.8) and (l1.6).

Functions ¢0(() and \llo(g), which correspond to an
elastic washer, will obviously take the form:

- s v b .o
Dy () =+ Do*(3), WV, () ==+ ¥(0)
i (2.2)
(o=t =eve )
whereby functions ¢0*(;) and Yb*(é) are holomorphs in a
unitary circle.
From the appropriate conditions (2.1),.we obtain the
following, which is entirely similar to the previous
@0+ PO =2, (=), |01t (2.3)
¢ N (o) d 1 A
0O =g T2 o (X )+ 5. K< 2.0
L, s .

where constant A is given by equation (l1.7); it is assumed that




Im¢h*(0)=0. From (2.4), using, as before, the condition
N(og)=N(—35,)=0 (2.5)
0,» -0, are end points of arc L2, we find

e

I~
oF

Substituting the left side for zf and v, and expressing
the equality

P
o —-v,—}— —=
we have

po Re {(x — 1) & (5) — (x 1) o (5) - o (o) - 2 (3)} =
=1 Re { (19— 1) Dy (3) — (1) o0 (3) + 50} (5) + o, (o)} (2.7)

Introducing the corresponding expressions given by the
previous formulas, after certain simplification we obtain

N'(s)ds p (N (3) ds q . -
kN (o) + o [ 57— [ = =5k Pe— G) (2.8)
where : \ /393
k— 10 =2)(+)Eg—(1—2v)(1+v) E
2 1= Ey+(1—"DE ' (2.9)
_ (1—"9)E, 1+ 2E+ A +wE
p= A=) Eg+(1—HE ' =2 A=) Ey+(1—) E (2.10)

whereby E represents the modulus of elasticity. The contact arc
L2 is, as before, unknown, by virtue of which relation (1.13)
should be attached to equation (2.8) as before.

When the washer and the plate are made of the same material
(V0=V, E0=E), coefficient k in (2.8) becomes zero, as a
result of which this equation is solved in closed form. The
solution (closed) to the problem in this case was found in [5].



Moving in equation (2.6) to the limit at Edkd» we come to

the case of an absolutely rigid washer -- equation (1.14).

If E=», we have the case of a round, elastic washer
inserted into an opening of equal radius in an absolutely rigid
plate pressed toward it by a concentrated force applied to the
center of the washer. Equation (2.8) gives

S [N'(s)d P -
1+1N(au)+ oi’: () °‘— ﬂi(l-}-l) (°o'—°o) (2°ll)

G =G

whereby X is the washer's elastic constant.

Equation (2.8) is an example of an equation for a two-
dimensional contact problem covered without any limiting
assumptions.3

3. Let us add to equation (2.8) a new variable
introduced by the relation

x—li [os S 9 — pity
=t x4 i3’ f= 1+4sina,’ 9e =€ (3.1)

The previous function, as we know, gives the conversion of
the unitary circumferencel«(=l into real axis x, transferring
arc L, to segment [-1, 1]; tge point -(@,, , on the
circumference is transferred respectively to points x=-1, x=1.

After the obvious transformatiops, we will have

1
_ 4 ¢ N'(gde - pR N(ydt 43 z2 —f2
N@) =+ .[ —z =(z2+32)51 PP — = L @TEP (3.2)

-1
N(1)=N(—1)=0
whereby, for simplicity, we again assume N(g)=N(x). The

=1E

equality (l1l.3) is transformed to

3_[(;2.*_@2):”(‘)“— (3.3)

10




If we disregard unknown parameter P, equation (3.2) is /394
the familiar equation of the theory of a finite-span wing, which

is usually written as:

(3.4)

B(z) — 3=
-1

T (x) 1 Jl IV (1) de

Here B and f are assigned functions at segment {-1, 1],
wherein B(x) is zero nowhere except the ends of this segment,
while (%) is the desired function subordinate to condition
M(1y=0r(-1)=0.

Many articles have been devoted to the wing theory equation
(cf. e.g. [7, 8]). Among the countless methods of numerical
solution devoted to this equation, the most successful from the
standpoint of practical applications is Multhopp's (direct)
method [1], which, because of its simplicity and efficiency, is
'still considered the best mathematical device for aerodynamic

calculation of a wing.

According to those methods, the desired [ takes the form of
a trigonometric interpolation polynomial
sin (n < 1) }sin ﬁk____

hd k
LiT; z]= Z (— 1) 7T () cos ¥ — cos ¥;
k=1l

2 DV T
py é}ll (:z:,‘)m_,;(l sin md; sinm (3.5)
) . k= .
z=cosd, z=cosd, = g

.

0¥ k=1...,n

and, after application of a certain squaring formula to a
special integral on the left side of (3.4), this equation is
replaced by a system of linear equations of relatively
approximate values fk of the desired function in the given
(Chebyshev) nodes xk; This system takes the form

(Fim--’-bmm)l—‘m:fn—*- _s_\!'bml‘fl (m=1""'n) (3'6)

k=1

11



where Bm+B(xm), fm=f(xm); b is also known, so that

mk
bmk=0 at m-k =2, 4... Substituting the solution to this
system into the right side of (3.5) instead of rk, we obtain

the approximate solution to the equation (3.4).

Multhopp's article [1] proved that consecutive
approximation method for (3.6) always converges if B(x) is
negative [1l]. With negative B(X), which occurs (as can be seen
from equation (3.2)) in applications to elasticity theory,
iteration method as applied to system (3.6) also yields a
converging process, provided that B(x) satisfied the condition6

max 1

1
ze[— L1] { @ <= (3.7)

We will apply this method to solving the equations derived /395

. here.

Solving (3.2) and (3.3) together, we will, according to
(3.5), find the approximate solution to (3.2) in the form

2V =22

n ”
- M aUpey(2) a,= Z N sin mi,
T 1 ngl ' =1

sin m#
Uy ()= sin

N (z) =
V) (3.8)

The function Um_l(x) is a polynomial of the x-th order of
m-1 (a second-order Chebyshev polynomial).

To calculate the desired values for the problem, it is
convenient to shift from the physical plane of variable é to the
plane of variable z=x+iy with the relation

~

o

COS 2,

=ity =1vae) (3-9)

1)

which accomplishes the conformal transformation of the circle
|£|<1 to the upper half-plane IM z)0. After transformations, we
obtain the formula

12



J‘N(:)dc_ 1 fN(x)dz+ fN(x)dz (3.10)

r—z 2= ) 22+ 32

s— 1% 2%i

L, -1 -1
But the Koche integral on the right side of (3.10) is
calculated in final form if N(x) takes the form of (3.8).
Consequently, after Multhopp's method is used to solve the

equation in the contact problem, the corresponding functions for
stress are determined in closed form.

Y

2%

Example 1l. An absolutely rigid round washer squeezed
against an elastic plate (external problem). The problem's
equation is derived from (l.1) by substituting (3.1l) or the
limit transition in (3.2) at Edadh We will write this
equation as

1

1 1 ¢ N (t) dt 32 23Pp x2—73
%, — :’1 .‘rl ._q , ——_'-—._—_—_"__
1+1ﬁ4&wV“*‘§§f —r —RiR T (il @+ (3.11)
. : ) } |
where
1 iN()d
¢ IV (1) dt
=7 \Tcp - (3.12)

Let us remember that parameter P, introduced into (3.11)
and characterizing the size of the contact area, is unknown and,
in addition, the right side of the equation contains the still
undefined constant q in the form of functional (3.12). 1In the
rest, (3.11) coincides with (3.4), so that B(x))> 0 at [-1, 1].

Equality (3.3) is rewritten as:

]
8. A3
cH=3 ﬁx\’(t)dt=l (3.13)
-—1]

In our (symmetric) case of equation (3.11), if n is odd,
"system (3.6) will take the form:

vz —1 3 _|_‘ _
[7-+1 cos?d,, — & + b | N = _
_ 5. g 24P%  cos? By — 32 ,
= 24 BoulNk + 53 w3 T 7 T %) (cosEIm T )

k=1

th(n4-1)

13




where

T =Tha—r (m=1,2,...,12(n+1))

By == buy; -+ b, pi1—k k=1, .o, gt —1) Bun. i1y = bty (3 ) 15)
Solving this system for a certain parameter @ {e.g. at /396
@=1), we will find unknwon ﬁk in the form
Ne=NPq+ N C=1y .0 (3.16)

whereby N will be known. The corresponding

éO)' Nél)
approximate solution to N(x) will obviously contain constant q,
defined as a result of (3.12). Then, after ﬁ(x) is calculated,
the left side of equality (3.13) is determined. To determine g
and c(@), a Gaussian squaring formula is used (e.g. [9], p. 617).

g1 &y sin $, 3%
n - 1t=x cos2§;, - 32

R P INC I (3.17)
_n+‘f="1 (cos2 ¥ + 32)2 T-l

The value of @ which we have taken and the N(x)
correspnding to it will generally not satisfy equality (3.13).
Therefore, selecting new B values, we will repeat our
calculations until this equality is satisfied with necessary
accuracy. As a result, we will have certain approximate values
for B and N(x) for a given n. Then other n's are taken and
these calculations repeated.

In system (3.14), we will first assume n=7 and will set
Poisson's coefficient equal to 1/3 for further calculations. In
expanded form the resulting system appears as:7

8 =
[m +5.2262 ] Ny =

g3 5 5 cos?d —32 P
% 182 7% " (costd, 1B =

=1.9142 Ny +0.1484N, + -5

14



B ' 5
[m -+ 2.1648] Ng=

q32 5 3 cos2d;—32 P
=0. 9142N3+08536N,+c05293+32+ I WW

] —

[roesram + 28086 ] M=
) _ . q32 5 . cos28, — 32 P
==1.0360 ¥, +i.1944N3+m+ 7 m =

(reir ]

L Tos s, 7 +2:0000 | Vo=
ql 3 cos‘”h—pz P
=0.1121 Ny + 1. 57741v3+0052 NTetT 4 (_—cos‘-’i)‘+12)" =

3k=l-‘8:, k=1,2,3,4 (3.18)

Solving this system together with (3. 17), we will have

(values for g and Nk [1] in (3.16) as well as Nk are given

in P/h)
3=1.20886, ¢=—0.52422 (3.19)
N, = 0.48035 g — 0.29067 = —0.54248, V» = 0.91050 g — 0.63176 = —1.10906 ' -
Ny=1.23317 1 — 1.00926 = —1.65571, Ny =1.35900 7 — 1.20474 = —1.91715 (3.20)
The

value of the following polar angle corresponds to the /397
@ which has been found

2, =—10°48'12" (3.21)

with which contact arc L, is calculated. Given these values

for the unknowns, the left side of (3.17) equals

c (8)=0.99947

. . . . 9
For maximum pressure in our approximation,

according to
(3.20) we will have

Vo =Ny = —0.61025 p (3.22)

Later in (3.14) wé will use n=15. This system of eight

15




equations (with five separate unknowns in each) will be solved
by consecutive approximation method, wherein we will use the
values in (3.20) with unknown q as the zero approximation of

N2, N4, N6, N8.
Solving this system with the ( found together with (3.17),

we obtain Multhopp's second approximation

q=—0.52418 (3.23)

X, =0.24397 g — 0.14220 = —0.27008, N, ==0.48054 ¢ — 0.29080 = —0.54269
Ny =0.70465 g— 0.45269 = —0.82206, N,=0.91061 ¢— 0.63180 = —1.10913
Ny=1.09038 g — 0.82382 = —1.39537, Ng=1.23312 9— 1.00927 = —1.65565
Np=1.32624 g — 1.15058 = —1.84577, Ng==1.35877 y— 1.20437 = —1.91663 (3.24)

For these values of @ and Ek(k=1, eees 8), the left side
of»(3.l7) gives

¢ (3)=10.99933

For maximum stress, we have

Nli—o==Ng==—0.61008 P (3.25)
As we can see, the desired values in the first and second

approximations differ little from one another.

2. A round, elastic washer, squeezed against an opening
in a rigid plate (internal problem). The appropriate equation
is derived from (2.11), if we introduce (3.1l) into it. It takes

the form:

1
x—1 3 N ()dt 23P 2—@

el P N@ -
PRV - Tor — s e (3.26)

-1

This equation (with the stipulation made above relative to
@) also coincides with (3.4), so that, this time, B(x) 0 at [-1,
1].

16



System (3.6) for equation (3.26) externally differs little
from system (3.14). It takes the form: ‘

P 1) s 9 w0
v — 1 3 , = = 23P c0s2 py — 32
[—7.—#1003?3,.-;-{:2711”‘] N= B"k‘\*-!-.-.(l+x)(cos28..+§=‘2)2 (3.27)

=1

(m=1,...,1s(n 1))

This system should be solved, as before, by satisfying
equation (3.17) and simultaneously determining parameter 6. at
n=7, we will have the following values for the desired parameters
(ﬁk is given in P/Mn):

8=0.91612 (3.28)
Ny ==—0.37480, N, = —0.85751, Ny= —1.47396, NV, = —1.84453 (3.29) -

Given these values, c(P)=l.00034.

From this we obtain the following for the desired value of /398
angle o, which corresponds to the end of the contact arc

1, = 5° 00" 46" (3.30)
and maximum pressure will equal
Vo=, = _o.58713p (3.31)

In (3.27) we will then assume n=15. Solving this system
with (3.28), we obtainlO

Ny =—0.17990, Vo= —0.37438, Ng=—1.15746, Ng=—1.47378

Ny =—0.59686, V= —0.85727, N;=—1.73637, Ng=—1.84215 (3.32)

Theh c(@)=0.99905. Specifically, for maximum normal stress
in the second approximation we will have

N | pm0 == ~0.58638 P

17



According to the values found for E(x) and 6, we can, as
indicated above, calculate all other desired values for the
corresponding contact problem. Specifically, it is easy to
calculate normal shifts which will satisfy the contour condition

of the problem with a certain error.ll

In conclusion, let me note that these calculations were
done at the USSR Academy of Sciences' Computing Center. I will
take the opportunity to thank the directorate of the Computing
Center for its assistance, as well as Ye. S. Bogomolova and T.
M. Kopylova of the Computing Department for their rapid and

accurate work.

18



FOOTNOTES

1. The last condition of (1.1) should have been written more
accurately: =g(y)+c sin ««, where c is the forward
movement of tge die; but one can do without this shift
since it can be eliminated by the rigid forward shift of
the entire systemn.

2. It is assumed that the die has no angular points at the
contact boundary. On this assumption N(g) will be a
continuous function at L, becoming zero at the ends of the
contact arc.

3. Contact problems of this type, which result in equations of
the same structure, were first considered apparently in I.
Ya. Shtayerman's work (e.g. [8]). In this article, we
direct our attention primarily to the possibility of
efficiently solving these problems.

4. 0x denotes the end point of arc Lo for which Re0Ox)0.

5. The functions B(x) are exclusively such in application to
wing theory.

6. Justification of Multhopp's method and its application in
problems discussed here are found in the author's
dissertation ("Certain Mixed Problems of Elasticity
Theory," Steklov Mathematical Institute, USSR Academy of
Sciences, 1955).

7. Reference [1] has tables for calculated values of bpk at
: n=7.15.31.

8. Here and henceforth we will require that relative error in
(3.17) not exceed 0.1%.

9. The solution to N(x) which corresponds to n=7 is gssumed,
according to Multhopp, to be the first approximation.

10. Given our and the Poisson's coefficient taken above,
function B(x) in (3.26) satisfies condition (3.7).
However, we must state that consecutive approximation
method converges much more slowly in this case than in the
previous case. For this reason, the method cited, when
applied to system (3.6) given negative B(x) [even with
(3.7)], may not always be preferable.

11. For examgle, the absolute error for‘M/P(vp+

+d2vy /da<) for the external problem does not exceed
0.0072.
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